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This research progressed simultaneously in several directions. Details of each area of 
research are discussed below. 

First, we developed a novel neural network based approach to imaging ionospheric 
motion. The algorithm employs neural networks as estimators of a time varying electron 
density distribution; however the networks are not used to estimate the electron 
densities directly but rather the change in electron densities at each time step. 

At each time step, the method consists of four main parts. First, a ray tracing procedure 
is used to calculate ray path information for the current time step; this information is 
used to determine the expected measurement values based on the last time step. 
Second, the expected measurement values are subtracted from the actual 
measurement values. This information, along with the ray path geometry, is then 
preprocessed so that it can be used by the neural network. Third, the neural network is 
trained using the pre- processed data. Fourth, the network is used to produce an 
electron density estimate for the current time step. 

Preliminary experimental results indicate that ionospheric electron density estimation 
using this method is both computationally feasible in real time and capable of producing 
reasonable reconstructions given the proper choice of neural network. In particular, a 
two layer neural network trained used the Levenberg-Marquardt method was found to 
be capable of locating a localized time-varying Gaussian depletion type ionospheric 
disturbance based only on very sparse data. 

Second, we have worked on the development of a new fully 3D reconstruction algorithm 
for CIT, capable of combining some of the available measurement sources in order to 
compensate for the unavoidable physical limitations of the acquisition system. 

The main features of the algorithm are: 

a) Fully 3D reconstruction with arbitrary voxel size, b) Real-time system geometry 
computation in spherical coordinates, c) Direct (non-iterative) reconstruction based on a 
least-squares inversion method, d) Physical constraints (e.g. non-negativity of the 
electron density) and RADAR measurements (e.g. WSBI data) introduced as boundary 
conditions for the least-squares algorithm, e) No a priori information on the electron 
density distribution required, f) Ready for acquisition system extension to occultation 
measurements. When satellite occultation TEC measurements will become available an 
interface is ready to include them in the reconstruction algorithm system matrix, g) 
Choice of parameters is minimized. Raw estimates of the measurement errors are the 
only parameters necessary to run the whole algorithm.   At this time most of the 
software features are operative. The package includes a fast 3D ray-tracing algorithm 
capable of computing a system matrix with arbitrary voxel sizes in real time and storing 
it in a compressed sparse form. 



The bounded least squares problem engine has been tested and optimized for the given 
problem. A technique to improve the sparseness of the intermediate results generated 
in the inversion process is under construction. This represents at the moment the factor 
that limits the size of the system matrix, which can be used without incurring in 
unacceptable memory requirements. 

The inclusion of non-TEC measurement data, e.g. WSBI data, is under development in 
this stage. On the other side the algorithm gave very promising results simply adding 
some simple physical constraints in the reconstruction algorithm. 

Third, we developed the multi-input volumetric inversion algorithm (MIVIA). After 
algorithm development, the goals of the research were to test its reliability and 
performance for various types of CIT system geometry and various ranges of regulatory 
parameters. 

Sensitivity Analysis of MIVIA involved a three phase sequence of tests for determining 
parametric sensitivity, convergence sensitivity and sensitivity to a priori information. 
The volumetric inversion algorithm was designed to select a priori information based on 
guidance from TEC measurements obtained during the CIT satellite overpass. 
Volumetric information is supplied to the reconstruction in the projection and image 
domains of each iteration. Investigation of the relative strengths of projection and image 
domain corrections yielded optimal values of 1 for projection domain shaping and 0.01 
times the order of maximum electron density for image domain shaping. Consequences 
of excessive image domain shaping in instances of low sky coverage were also 
demonstrated including the case of over correction that results in the inversion of image 
features. Convergence was achieved faster in the vertical direction than along the 
horizontal because of the dual support of ray path profiles and image neighborhood 
shapes in the former. Horizontal convergence supported only by image domain shaping 
and is typically achieved between 40-50 iterations as opposed to 10-15 iterations for 
vertical convergence. With respect to a priori input, it was observed that reconstructions 
preserved features of the parent image when aided by relatively smooth and featureless 
a priori images. Such supportive information is crucial to the formation of the vertical 
profile and is used based on the need for such information during the localized 
volumetric shaping processes. 

A considerable amount of work was performed on estimating reconstruction artifacts 
that arise because of non-ideal system geometry and incomplete recording of an 
overpass from individual stations. Various pathological instances of imperfect system 
geometry were developed including isolated non-coplanar receivers, satellite orbits 
longitudinally displaced from receiver chains and of narrow ray path beams from certain 
stations. Among the important observations on artifact formation was that displacement 
of an individual station from an otherwise coplanar receiver chain results in an elevation 
of features in the reconstruction in over the latitudes in which the displaced stations ray 
fan plays a dominant role. Artifacts such as false enhancements and troughs were 
found to form because of abrupt termination of ray fans particularly in the center of the 
image plane. It was also observed that if geographic logistics prohibit the placement of 



a receiver chain directly below the satellite path, the quality of reconstructions is 
significantly improved by positioning at least one additional receiver in the orbital plane. 
Such a co-planar receiver provides invaluable support to the set of largely slant TEC ray 
paths in the projection set. 

A scheme for the quantitative evaluation of the features of an ionospheric image were 
also developed with the aim of providing an objective and automatic analysis of image 
content. Histogram redistribution techniques were developed to separate a typical 
ionospheric electron distribution into enhancements and horizontally stratified bands. In 
addition extremely localized searches were devised to identify travelling ionospheric 
disturbances which are usually invisible to the human eye because of the dynamic 
range of the entire image. Geometric and electron density based properties of image 
regions corresponding to features such as peaks and horizontal bands were derived 
and used for the comparison of images. It is anticipated that this quantitative scheme 
will permit further advanced evaluation of CIT inversion techniques by comparing 
reconstructions by various algorithms using the same TEC data set or for comparing 
CIT reconstructions to gold standards such as images obtained using the incoherent 
scatter radar technology. 

Finally, we worked on developing and implementing CVT (CREDO-VSIRT Technique), 
studies on the incorporation of WSBI data into VSIRT, and reconstructions for simulated 
and real data. 

The studies on the incorporation of WSBI data into VSIRT entailed understanding the 
weaknesses of both CREDO and VSIRT, and finding ways to use the strengths of each 
for the benefit of better reconstructions. Some of the techniques include the initial 
guess method, the control point method and the method of doing the WSBI inversion 
within VSIRT. 

In the area of reconstructions, the most important result was the simulated test of 
detecting an E-layer using VSIRT.   This test proved that VSIRT was able to pick up an 
E-layer, but it was only able to do it in a very controlled environment, i.e. ideal station 
alignment and an E-layer that was quite high in altitude. 

Technical details are provided in the enclosed papers. 
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Abstract.     We present a novel artificial neural network based computerized 

ionospheric tomography (CIT) technique, capable of imaging through time in three 

dimensional space. Total electron content (TEC) data collected from a satellite passing 

over the region of interest is used to train a neural network.  The trained network 

creates estimates of the difference in ionospheric electron density between time steps 

based on the TEC data. Application of the difference estimate at each time step to the 

previous electron density image results in a time varying ionospheric electron density 

estimate. Experimental results on synthetic data are presented that demonstrate that 

the algorithm is capable of detecting short-term localized disturbances in the ionosphere. 



1.   Introduction 

Although accurate information about ionospheric electron densities is crucial for 

correcting radio signal aberrations, the ionosphere is far from static, varying even within 

the time scale of a single satellite pass over the region of interest. Natural effects such 

as diurnal variation along the day/night boundary, solar radio emissions, solar flares, 

volcanic eruptions, earthquakes, and geomagnetic storms can all affect the dynamics of 

the ionosphere within minutes. Rapid perturbation of the ionosphere can also result 

from man made effects such as chemical and nuclear explosions and high-powered radio 

waves. 

Current measurement techniques are unable to provide the necessary information 

about ionospheric electron densities. As a result, it is necessary to use computational 

methods to transform measurement data into images of ionospheric electron densities. 

The use of such computational techniques is referred to as computerized ionospheric 

tomography (CIT). 

The majority of current CIT algorithms are only capable of reconstructing static 

images of the ionosphere.   However, when static CIT algorithms are applied to a 

dynamic ionosphere, the clash between the assumption of time invariance made by 

these algorithms and the time dependency of the actual electron density results in 

estimation errors.  These errors include clearly visible artifacts, such as streaking, 

negative ionospheric density values, and geometric distortion (i.e., features displaced 

from their actual position) [Sutton and Na, 1998]. 

In order to avoid such errors, it is necessary to use time varying CIT (TVCIT) 

algorithms capable of estimating ionospheric electron densities as they evolve in time. 

Methods have been presented that attempt to estimate time varying ionospheric images 

[Sutton and Na, 1998; Howe et al., 1998].   However, these methods are critically 

dependent on a priori models of ionospheric structure. As a result, ionospheric motion 

and structure that does not fit the a priori models may be ignored or misinterpreted. 



Unfortunately, it is exactly this kind of unpredictable or unknown behavior that it is 

most desirable to detect. 

This problem stems ultimately from the underdetermined nature of the system. 

The above methods attempt to address the lack of data by making use of empirically 

derived basis functions. However, in doing so they compromise their ability to detect 

novel or unusual ionospheric structure and activity.  In this paper we present an 

alternative artificial neural network based technique capable of imaging through time in 

three dimensional space. The neural network based method attempts to preserve the 

ability to detect interesting ionospheric phenomenon, while avoiding the problem of data 

scarcity. Because the data is so sparse, it is extremely difficult to accurately compute 

the electron density at any point in the image. Instead, we seek to generate estimates 

of the ion density based on what little information is available. In principle, artificial 

neural networks are well suited to this kind of estimation because they have the ability 

to generalize results based on a small subset of the data. 

2.   Computerized Ionospheric Tomography 

A minimum data collection system used for CIT consists of a radio beacon satellite 

orbiting over the region of interest and a series of ground station receivers aligned 

(roughly) along the satellite path. The system collects measurements of total electron 

content (TEC) by means of the Doppler radar technique. Two signals are sent out at 

frequencies high enough to linearly penetrate the ionosphere; the phase difference at 

each ground station receiver provides a measure of the TEC along the ray path from 

the satellite to that station. This TEC measurement is approximately the line integral 

of electron densities along the ray path. 

Figure 1 Figure 1 

The first CIT reconstruction technique was introduced by Austen et al., 1986. Since 

that time, a number of CIT techniques have been devised and experiments in various 



locations around the world have been conducted. 

3. Neural Network Approach to TVCIT 

The artificial neural network is not used to estimate the electron density directly 

but rather the change in the electron densities at each time step. If the time step used 

is sufficiently small, then the difference in ion density between time steps should be 

minor. Thus, the problem can be broken down into a series of relatively small estimation 

problems. 

At each point in time, the algorithm proceeds through four main steps. First, a 

ray tracing procedure is used to calculate ray path information for the current time 

step; this information is used to determine the expected TEC values based on the last 

time step. Second, expected TEC values are subtracted from the actual measured TEC 

values for the current time step; this information, along with the ray path geometry, is 

preprocessed so that it can be used by the neural network. Third, the neural network is 

trained using the preprocessed data. Fourth, the network is used to create the electron 

density estimate for the current time step. 

The algorithm assumes that a good initial estimate is available at the start of the 

procedure. Although this is a significant assumption, there are a few practical methods 

by which this initial estimate could be obtained; these will be discussed later. 

Aside from an initial estimate, the algorithm also requires system geometry 

information and TEC measurement data. The geometry is determined by the satellite 

position and ground stations positions. The TEC measurement data is collected by the 

ground stations at select time intervals. 

4. Algorithm Details 

Given the system geometry and TEC data, the first step in the reconstruction 

process is the calculation of the ray path information.  In general in tomography 



problems one seeks to calculate a system matrix (either explicitly or implicitly) which 

contains information about the ray paths through the region being imaged. In the 

ionospheric tomography case, at each instant in time there is a spread of ray paths from 

the satellite to each of the ground stations. The data used is collected from within 

a given time window.  Once that time window has been selected, it is necessary to 

calculate a system matrix describing the ray paths from each of the satellite positions to 

the ground stations. Calculating the system matrix in general involves some form of ray 

tracing. In this case, the ray tracing procedure is somewhat involved due to the nature 

of the spherical coordinate system used by the simulation. 

The ray path information is then used to calculate expected TEC values given the 

electron density distribution of the previous time step. These expected values are then 

subtracted from the measured TEC values to produce TEC difference values. 

The next step of the algorithm consists of preprocessing of the ray path and 

measurement data.   Preprocessing of the data is necessary because the artificial 

neural network is expected to approximate the change in ion density as a function of 

spatial position. As such, it requires as its input pixel coordinates and outputs the 

corresponding electron density change value. This requires that the data (i.e., the total 

electron content measurement differences and system matrix) be used to generate pixel 

values on which to train the artificial neural network. This is done by calculating the 

the minimum norm solution to the underdetermined equation 

Ax = b, 

where A is the sparse system matrix, b is a vector containing the TEC difference 

measurements, and x is a vectorized representation of the image. The resulting solution 

vector x contains the training output values, each of which corresponds to a non-zero 

element of the system matrix. The coordinates of the non-zero elements are the training 

input values. Note that these are only the pixel values along the ray paths; the procedure 



is not capable of calculating of calculating pixel values elsewhere in the image. 

Once the experimental data has been preprocessed into the correct form, it can be 

used to train the artificial neural network. The network has three inputs, one for each 

of the coordinate values, and a single output unit for the electron density change. The 

output unit has a linear response so that it is capable of representing any value. The 

number and nature of the hidden units varies by the approach used. 

The network is then trained using the Levenberg-Marquardt method. An alternative 

to the gradient descent based backpropagation method, the Levenberg- Marquardt 

algorithm is theoretically faster and potentially more accurate, although it requires 

more storage space for the computation. 

The Levenberg-Marquardt algorithm can be used as an approximation to the 

Newton method. The weight update rule is 

AW = (JTJ +//I)-1 Jre, 

where W is a matrix of weights Wij connecting two layers, J is the Jacobian matrix of 

derivatives of each error to each weight, e is an error vector, and // controls the learning 

rate. 

If ß is very large, the update approximates gradient descent; if it is small the 

update approximates the pure Newton method. The Newton method approximation is 

faster, but tends to be less accurate when near the minima. To deal with this problem, 

the parameter /z is adjusted in an adaptive fashion. If the error is decreasing, y, is made 

bigger; if the error is increasing, ß is made smaller. 

When training is complete, a complete estimated ion density change image can then 

be created. The coordinates of each pixel are given as input to the net and the output is 

assigned as the pixel value, thus forming a complete image. The electron density change 

image can then be added to the previous electron density image to produce the current 

electron density image. 



5.   Experimental Results 

Experimental results for the algorithm were generated using simulated volume data 

along with ground station positions and satellite paths from an ongoing campaign in 

the Caribbean region. 

The simulation included an ionospheric disturbance, a Gaussian depletion of the 

electron density. Initially, there was no activity. Then a region of increased electron 

density was introduced, followed soon after by a neighboring region of decreased electron 

density. 

Figures X.X and X.X show a longitudinal slice of the electron density image 

produced by the simulation before the disturbance. 

Figure 2 figure 3 

ionospheric density estimation problem appears to yield good localization of an 

ionospheric disturbance, as long as some of the ray paths pass close enough to the 

disturbance for it to affect the measurement data. 

Figure X.X shows the output of the Levenberg-Marquardt trained network with 

ten neurons given four ray paths, one of which passes close enough to the Gaussian 

depletion to detect it at that time step.  Figure 4.15 should be compared to figure 

X.X, which displays the ground truth electron density change for the same time and 

longitudinal slice. Although the electron density change is more distributed than in the 

ground truth, the peak of the density change is located in the correct spot. 

Figure 4 Figure 5 

Figures X.X-X show the output of that same network at the 1st, 7th, and 16th 

longitudinal slices, along with their associated ground truths. Note that the electron 

density is located correctly in longitude as well as in latitude and altitude. 

Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 

The method suffers from the fact that the number of hidden units must be chosen 

carefully. If too few hidden units are used, the resolution is insufficient; if too many 

Figure 2 

figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

Figure 1C ) 

Figure 1] 



hidden units are used the network overfits the data and estimate becomes distorted and 

irregular. 

As well, good convergence via the Levenberg-Marquardt method is sensitive the 

random initialization of the neural network weights.  Therefore, for the ionospheric 

reconstruction system to produce reliable results, it is necessary to repeatedly train the 

network at each time step. The result at a given time step with the least error is then 

used. Although this still does not guarantee a good approximation (it might be that a 

poor choice of random starting weights is made each each try), it would greatly reduce 

the probability of a poor approximation. The number of tries can be adjusted according 

the required confidence in the results. 

However, such an approach increases the amount of computation. Fortunately, 

training the network using the Levenberg-Marquardt method takes considerably less 

time than generating the complete ion density estimate from the trained network. On 

the order of ten training attempts can be made without adversely affecting the speed of 

the algorithm to a significant degree. 

6.   Conclusions and Future Work 

We have presented a novel neural network based CIT method capable of imaging 

ionospheric electron densities across time and three dimensional space. In experiments 

using simulated electron density data and realistic CIT system geometries, the algorithm 

has proven capable of estimating the location and magnitude of regional transient 

disturbances in ionospheric electron density.  The method has the advantage of not 

relying on a priori models of the ionosphere, thereby giving it the capability to detect 

unusual or unexpected ionospheric phenomenon. Furthermore, the computation can 

be performed in real time, making it amenable to field application. The method is 

extenable as well in that it can be easily modified to use additional data sources, such as 

ionosonde readings or total electron content measurements garnered from GPS satellites. 



Still, some improvements suggest themselves with regard to this TVCIT method. 

The sensitivity of the method to the random initialization can be mitigated by developing 

a system which attempts to pick the best result from an array of estimates generated 

by different initializations. Or alternatively, if the time resolution is sufficiently fine, 

then the electron density change can be considered continuous in time, and information 

about the motion in previous times could be used to initialize the network weights for 

the current time step. 

As well, possible overfitting of the neural network to the limited data could be 

reduced.  This could be done by sampling the data according to ray path coverage 

density, or by taking advantage of the extendability of the method and adding additional 

data sources. 

Effective initialization of the algorithm remains the most pressing problem. In the 

experiments discussed previously, a good initial estimate was assumed. However, a poor 

estimate can ruin the results of the algorithm. Incoherent scattering radar measurements 

could provide a good initial estimate; however in the absence of such generally available 

measurements it is necessary to develop a more general initialization method. 

Three such methods suggest themselves. The first would be to start with a set of 

a priori images, chosen appropriately for the geographical placement of the region of 

interest. The method could then be initialized with the a priori image that most closely 

matches the measurement data from the first time step. 

The second approach would be to collect measurement data for some amount of 

time as the satellite begins its pass over the region of interest. A standard non-time 

varying CIT technique could then be used to create a reconstruction using the data 

collected from the beginning of the pass; the resulting image could then be used to 

initialize the algorithm. 

The third method would only be applicable in a scenario where repeated experiments 

are conducted.  During the first satellite pass, only a static reconstruction would be 



performed. This static reconstruction would then be used to initialize the time varying 

algorithm for the next satellite pass. 
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Figure 1. A simple CIT system. 

Figure 2. A 2-dimensional view of the 10th longitudinal slice of the simulated electron 

density. 

Figure 3. A 3-dimensional view of the 10th longitudinal slice of the simulated electron 

density. 

Figure 4. 10th longitudinal slice of the electron density change estimate. 

Figure 5. 10th longitudinal slice of the simulated electron density change. 

Figure 6. First longitudinal slice of the electron density change estimate. 

Figure 7. First longitudinal slice of the simulated electron density change. 

Figure 8. 7th longitudinal slice of the electron density change estimate. 

Figure 9. 7th longitudinal slice of the simulated electron density change. 

Figure 10. 16th longitudinal slice of the electron density change estimate. 

Figure 11. 16th longitudinal slice of the simulated electron density change. 
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Abstract 

This paper presents results of investigations on the relationship between optimal image 

resolution and associated sky-coverage for ionospheric tomography. Several measures of the 

variation of image information content as a function of resolution have been presented for 

understanding the nature of tradeoffs between information content and computational resources. 

A new quantitative description of imaging geometry enables sky-coverage analysis for this 

limited information tomographic system. The paper also presents examples of commonly 

encountered non-ideal system geometries, diagnosis of associated image artifacts, and 

improvements achieved by minor logistic modifications to the imaging system. 



1.      Introduction 

Computerized ionospheric tomography (CIT) [Austen et ai, 1988] provides an excellent 

opportunity for observing the relationship between the information content registered by a 

limited angle, limited data tomographic imaging system and the subsequent information 

distribution achieved in the tomographic inversion process. The availability of records from 

numerous experimental campaigns conducted over the past decade and the emergence of 

applications such as over-the-horizon radar provide additional incentive for the study of 

information flow in restricted tomographic systems. Knowledge of information availability and 

distribution in limited information systems is expected to contribute significantly to diverse 

pursuits ranging from optimization of computational resources to the diagnosis of misleading 

features of artifacts in the reconstructions. This paper is concerned with two specific sets of CIT 

related analyses governed by tomographic information content, namely, image resolution 

analysis and sky-coverage based image artifact analysis. 

Ionospheric tomography involves registration of the phase difference between two radio 

signals from a low-orbit satellite by one or more chain of ground based receivers. The phase 

difference being representative of the total electron content (TEC) along the corresponding signal 

ray-path through the atmosphere, the recorded data can be processed using tomographic 

principles to reconstruct a two or three-dimensional image of the ionospheric region lying 

between the satellite and the ground stations. Due to geometric restrictions such as the curvature 

of the earth and continuity of the atmospheric shell around it and logistic restrictions such as the 

limited availability and irregular, non-coplanar positioning of receivers, CIT is effectively a 

limited angle, limited sample tomographic system. In addition to the above mentioned static 

restrictions, variations in receiver operation often result in dynamic limitations such as loss of 



absolute phase related information [Leitinger, 1994] and the incomplete recording of satellite 

overpasses from individual stations. Therefore the comprehensive study of information 

registration and distribution would involve quantitative definitions of ray-path distribution or 

sky-coverage in the ionospheric region of interest. The optimal resolution of reconstructed 

images in limited angle and limited sample imaging systems is governed by sky-coverage. In 

addition, the distribution of sky coverage itself can be related to the formation of image artifacts 

because it is effectively a measure of limited visibility of the object distribution. 

The remainder of this paper is organized into four sections. A more detailed description 

of sky-coverage and the image coordinate system are presented in section two. Sections three 

and four discuss the important results and observations made in the process of image resolution 

and image artifact analysis based on sky-coverage. The concluding section consists of 

discussions on the significance of information content evaluation and artifact diagnosis for 

limited angle tomographic systems and on directions for future research in this area. 

2.      The Coordinate System, Coverage and Imaging Geometry 

Traditionally CIT systems have used satellites with polar orbits and therefore ground 

based receiver chains have usually been oriented in a roughly north-south direction. An 

exhaustive study of experimental imaging geometries used over the past decade shows major 

digressions from the assumptions of chain linearity and coplanarity of ground stations and the 

orbital plane [Biswas, 1999]. Apart from irregular latitudinal spacing of receivers and 

longitudinal displacement of individual stations from the orbit plane, there exists a wide variation 

of ground chain distributions and alignments, the usage of multiple chains and the inclusion of 

multiple satellite orbits in the imaging process. Further more, it is necessary to make provisions 



for the usage of non-polar satellites in future systems. The practice of converting non-coplanar or 

slant ray-paths to vertical coplanar ray paths together with adjustments of TEC values involves 

geometric and electron density related assumptions and extrapolations [Mitchell et al, 1997]. 

Recent multiple chain CIT campaigns have used numerical interpolations between a set of 

verticalized two-dimensional image planes to obtain a three-dimensional reconstruction. 

However, as demonstrated by a volumetric inversion technique for CIT, it is most convenient to 

use the true geocentric three-dimensional geometry for CIT imaging since it avoids data 

preprocessing and permits direct use of slant TEC values. The three coordinates of the geocentric 

coordinate system are latitude (X-axis), altitude (Y-axis) and longitude (Z-axis). Whereas the 

resolution can be conveniently varied to desired resolutions with uniformity for the first two 

coordinates, the latitudinal dependence of longitudinal spacing makes it marginally more 

computationally intensive to ensure uniform spacing in the Z direction. Fortunately, fairly low 

resolution of between 3-7 planes is sufficient for most CIT imaging systems. 

For each satellite overpass, there exists a unique sky-coverage map. Coverage is defined 

as an image, occupying the same geographic region as the tomographic image, whose voxel 

value is a count of the number of ray-paths passing through it. Thus the coverage map shows the 

contribution of information in the most primary sense from various portions of the ionosphere to 

the TEC data set. Figure 1 shows a diagrammatic comparison between the imaging systems and F'gure 1 

coverage maps of typical medical and ionospheric systems. The limitations of angular visibility, 

number and regularity of samples are clearly evident in the second imaging system. The 

rectangular image of Figure Id shows curved ray-paths because of the curved to flat earth 

transformation. 



The system devised for the quantitative description of CIT imaging geometry is 

represented in Figure 2. The suite of coverage parameters, enlisted and explained in Table 1, can     Figure 2 

be classified into satellite orbit and ground station parameters. These parameters permit     Table l 

characterization and comparison of CIT imaging systems. They have been used in designing 

several simulated geometries for coverage analysis in section four. 

3.      Resolution Analysis for Ionospheric Tomography 

The optimal degree of three-dimensionality for volumetric reconstruction depends on the 

tradeoff between the feature resolution and information density, that is, coverage. TEC records 

from four CIT campaigns were analyzed for coverage estimates while varying voxel resolution 

along various image coordinates for a fixed geographic volume. All four campaigns were 

conducted in the equatorial and mid-latitudes, hence, there was significant gain in earth-surface 

resolution with small increments in the number of longitudinal planes. Figure 3 shows the system gure 

geometries of the four campaigns which represent the geometric diversity encountered in CIT. 

As the resolution was varied along the three geocentric coordinates with geographic 

resolutions shown in Table 2, there was an initial decrease in coverage with increase in     Table 2 

resolution followed by convergence as demonstrated in Figure 4. The point of coverage     Figure 4 

stabilization was regarded as the optimal resolution along the corresponding coordinate axis for 

the given CIT geometry. 

The results of resolution analysis have been presented in Table 3 with Figure 5 

highlighting some key observations. Comparing coverage of various image resolutions along the 

latitudinal and altitudinal directions for the simple, single chain imaging systems of the Mid- 

American CIT Experiment of 1993 (MACE-93) and the Australian campaign of 1995, it is 

observed that optimal resolution along the latitudinal direction is governed largely by the 

Table 3 

Figure 5 



displacement of the satellite orbit from the ground station and in the altitudinal direction by the 

density and linearity of the receiver chain. MACE-93 presented a fairly dense and linear receiver 

chain but one that was longitudinally displaced from the satellite orbit whereas the reverse was 

the case with the Australian system. Consequently, there is gainful return for expending 

computational resources towards improving the resolution along the X axis for the former and 

along the Y axis for the latter. Data from Table 3 indicates that given typical TEC ray-path 

density of a CIT system, optimal voxel sizes lie between 111 and 150 km along the X axis on the 

earth surface and around 20 km along the Y axis or altitudinal direction. 

Using a latitudinal resolution of approximately 120 km and altitudinal resolution of 20 

km, Figure 6 shows the variation of percentage coverage along each of the longitudinal or Z Figure 6 

planes for the four imaging systems. The single most important observation is that even for 

conventional single chain, single orbit geometries, such as MACE-93 and Australia-95, there is 

significant coverage in non-central longitudinal planes. This justifies the use of multiple 

longitudinal planes and hence true three-dimensional coordinates for CIT inversion particularly 

for multiple chain geometries such as for the ionospheric correction test methods II system of 

1996 (ICMT2-96) and of multi-chain, multi-orbit geometries such as used in the Caribbean 

campaign of 1997. Another noteworthy aspect of Z-plane information is that coverage is highest 

under orbital planes and the change in sub-orbital coverage is affected to a greater extent by 

orbit-chain displacement as evidenced by smaller changes in coverage for the Australian 

campaign than for MACE-93 for Z numbers of 3 and 11. 

Although the definition of coverage used in this study did not account for the angular 

visibility of image voxels and only the percentage coverage was used for resolution analysis, it is 

an estimate of the absolute maximum information content of the measured TEC data. This study 



revealed  the   significance  of  system  characteristics   such   as  chain   linearity  and  orbital 

displacement in determining available information content for processing and therefore, in 

serving as a measure of optimal image resolution. 

4.      Coverage Analysis for Ionospheric Tomography 

A study of several recent CIT campaigns [Biswas, 1999] show that the most common 

limitations of CIT systems are limited availability and irregular spacing of receivers, longitudinal 

displacement of individual receivers or the entire station chain from the orbital plane and the 

incomplete recording of the overpass from individual stations resulting in abrupt edges in the 

coverage map. In a typical CIT system intended to cover 40-50° of latitude, approximately 1200 

project samples are recorded by 4-7 receivers within ±45° of the vertical axis of the image. This 

results in a dense overlap of ray-paths, hence high coverage, in the center of the image which 

gradually declines to null at either lateral margin of the image providing a U-shaped cone of 

visibility as shown in Figure 1. In CIT, the typical receiver spacing of 100-300 km on the earth 

surface is significant when compared with source-receiver separation of only 1000-1200 km. 

According to the fundamentals of tomography [Kak and Slaney, 1988], such severe 

undersampling can result in significant reduction in high frequency energy of the projection set 

and by extension, of the reconstructed image. Images of ionospheric electron content are, by 

nature, smooth distributions of plasma and of low spatial frequency content. Hence, visual 

separation of genuine image features from artifacts due to non-ideal sampling for CIT poses an 

additional challenge. Sky-coverage maps provide useful information about the relative visibility 

of various regions of the ionosphere to the imaging system during a satellite overpass and can be 

directly related to the formation of image artifacts. 



The principle aim of experiments on sky-coverage for ionospheric tomography was the 

diagnosis of common image artifacts resulting from non-ideal aspects of the imaging geometry. 

As discussed in the first two sections, the study was based on devising various pathological 

situations which further restrict the information content of this inherently limited angle, limited 

data imaging system of CIT. 

Simple geometric images approximating prominent ionospheric formations such as peaks 

embedded in horizontally stratified layers with or without horizontal gradients were developed 

for easy diagnosis and appraisal of reconstruction artifacts resulting from the above mentioned 

limitations. The multi-source volumetric inversion algorithm (MIVIA) [Biswas and Na, 1998a, 

b] used for the reconstruction process used the test image itself to draw a priori information 

based on the data obtained in the simulated CIT overpass for various imaging geometries. 

Volumetric reconstruction uses shape information from electron distributions of the a priori 

images to guide CIT reconstruction. 

Figures 7a through 7e represent the simulated CIT imaging systems and coverage maps     Figure 7 

associated with the data sets used in reconstructions of Figures 8b through 8f. Despite the close     Figure 8 

match of a priori and simulated TEC data, the non-ideal geometries of all the systems except that 

of Figure 7a, result in misleading features or artifacts in the reconstructions. Figure 8a shows the 

original test image and Figure 8b, the reconstruction obtained with a near-ideal five-station 

geometry. 

The reconstructed image of Figure 8c corresponds to the three-station geometry of Figure 

7b where the second station is displaced from the satellite orbit. The coverage from the two sub- 

orbital stations is incomplete and there is a region above which the only coverage is from the 

second station. The corresponding region of the reconstruction shows an elevation in the altitude 
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of horizontal band. This altitudinal shift can be explained by two geometric the two contributing 

factors as shown in Figure 9. The first of these factors is the increase in the conditional number Figure 9 

or the ratio of the largest to the smallest eigenvalue of the sub-system matrix corresponding to 

ray-paths from the displaced ground stations. As shown in Figure 9a, the farther a receiver is 

from the satellite orbit, the narrower the angle subtended by a given segment of the orbit on the 

ground and the smaller the range of angles over which projection sets are available at that site in 

the tomographic sense. A smaller number of angles given the same number of TEC ray paths 

accounts for increase in the overall under-determinedness of the inversion problem and translates 

into lack of tomographic information from the under-represented region of the atmosphere. The 

second reason for the altitude shift can be attributed to the discretization of the ray-path in the 

altitudinal direction. Using typical resolutions of 20 km per voxel in the Y direction, the smaller 

the angle of elevation of the nearest point on the orbit from a ground station, the greater number 

of longitudinal planes traversed and the greater the cumulative approximations in the estimation 

of the discretized altitude of features as shown in Figure 9b. In the absence of corrective 

influences from the sub-orbital stations, the combination of these two factors is responsible for 

the upward shift of the band in the reconstruction of Figure 8c. 

Figures 7c and 8d demonstrate the role played by abruptness of sky coverage, due to 

the incomplete recording of overpasses, in the development of false distribution features. The 

northern half of the coverage map is affected by the narrow angular span of coverages from the 

displaced stations 3 and 4. Relative to the smooth and horizontally homogeneous reconstruction 

of the southern band in Figure 8d, the northern arm appears to develop variegated regions 

resembling enhancements and depletions [Davies, 1990] at or around the sites of abrupt 

coverage. The limitations of sky-coverage is compounded by the non-coplanarity of the stations 
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in this region which adds to lack of information in the relevant projection sets, and therefore, in 

the regional density distributions of the reconstructed image. 

Figures 8e and 8f correspond to reconstructions of data sets collected using the 

geometries shown in Figures 7d and 7e. The first imaging system consists of a divergent satellite 

orbit and receiver chain with the southernmost station as the only sub-orbital receiver. In the 

second system, the geographic disparity between the satellite orbit and the chain is even more 

pronounced than in the first except that the second station is now coplanar with the satellite orbit. 

Preliminary logic suggests that the effect of the greater longitudinal disparity in the second 

instance would account for poorer coverage and hence, less accuracy in the reconstructions. A 

comparison of the southern arms of Figures 8e and 8f, however, prove otherwise. This is 

explained by the fact that central location of the coplanar station in the second instance enables 

the corresponding ray-path fan to support a greater area both in the latitudinal and altitudinal 

directions whereas the support of the coplanar station in the first instance is greatly weakened by 

its location at the edge of the chain. These two geometries are frequently encountered in 

designing CIT systems where the satellite orbit is largely over vast bodies of water or the orbital 

plane otherwise inaccessible for receiver deployment. Under such circumstances where a single 

coplanar receiver may be deployed, better results are obtained by positioning it towards the 

center of the chain and enabling wider sky-coverage support from the chain. 

5.      Conclusions 

The preliminary experimentation with coverage and image resolution for ionospheric 

tomography has provided valuable insights into the quality and quantity of information 

disseminated in the course of image reconstruction. The definition of coverage used in these 

investigations was a simple and practical estimate of regional availability information in the 



visible portion of the atmosphere. It is anticipated that further refinements and usage of this tool 

will include other tomographically relevant attributes such as angular distribution of ray-paths 

passing through a voxel. Resolution analysis has demonstrated a simple yet elegant procedure of 

determining optimal computational resource allocation to meet the changing requirements of this 

limited angle, limited data imaging system. The development of some commonly encountered 

coverage related artifacts, which are otherwise difficult to identify given the nature of the 

fundamental image features, have been traced to specific non-ideal situations created in the sky- 

coverage of the imaging system. It is anticipated that the quantitative basis for parametric 

estimation of sky-coverage introduced in this paper will encourage further investigation and 

understanding of the dissemination of information during the data acquisition and reconstruction 

process. 

The procedures of coverage and resolution analysis presented here are in no way 

specifically tailored to suit the requirements of CIT. They represent an extremely generalized 

approach to the understanding of information acquisition and distribution in geometrically 

restricted tomographic imaging systems, and hence, are applicable to any imaging system with 

similar limitations. 
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Coverage Parameter     Symbol     Type Definition  
Angular divergence of satellite orbit from center longitude 
Angular coverage to the north from station x 
Angular coverage to the south from station x 
= (ax-ßx)/(ox + ßx) 
Angular divergence of chain from center longitude 
Vector of receiver spacing in north-south direction 
Vector of receiver spacing in east-west direction 
Elevation of nearest point on orbit w.r.t. station x 
Azimuth of nearest point on orbit w.r.t. station x 

ßi.Xi ;%2. X2 ; ; £,.,%■,]  

Orbit disparity X SOP 
North angular fan <*x SOP 
South angular fan Ä SOP 
Fan balance vx SOP 
Chain disparity K GSP 
Latitudinal Spacing Me GSP 
Longitudinal Spacing Mt GSP 
Orbit elevation 6 GSP 
Orbit azimuth Xx GSP 
Directional matrix A GSP 

Table 1.    List of Coverage Parameters. 
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# Voxels MACE-93, ICMT2-96 Australia - 95 Caribbean - 97 
[10,60] °N, [15,65] °N [-70, 0] °N [-10, 55] °N 

0 Latitude       Earth-Dist 0 Latitude Earth-Dist 0 Latitude Earth-Dist 
/voxel (k 

X 
m) along 
per voxe 

/voxel (km) along 
X per voxel 

/voxel (km) along 
X per voxel 

10 5.000 555.0 7.000 777.0 6.000 666.0 
20 2.500 277.5 3.500 388.5 3.000 333.0 
30 1.667 185.0 2.333 258.9 2.000 222.0 
40 1.250 138.8 1.750 194.3 1.500 166.5 
50 1.000 111.0 1.400 155.4 1.200 133.2 
60 0.833 92.5 1.160 129.5 1.000 111.0 
70 0.710 79.3 1.000 111.0 0.857 95.1 
80 0.625 69.4 0.875 97.1 0.750 83.3 
90 0.555 61.7 0.777 86.3 0.667 73.9 

(a) Latitudinal Resolution. 

# Voxels Altitudinal Resolution (km) 
[0, 1000] km 

10 100.0 
20 50.0 
30 33.3 
40 25.0 
50 20.0 
60 16.7 
70 14.3 
80 12.5 
90 11.1 

(b) Altitudinal Resolution. 

#of MACE-93 Australia-95 ICMT2-96                     Caribbean-97 
Z [-105,-90]c E [140, 160]°E [-95, -70] °E [-85, -55]°E 

plane °/Z Distance (km) 
N+        Sf 

°/Z Distance (km) 
Nf         S+ 

0 / Z     Distance (km)     ° / Z 
N+         S+ 

Distance (km) 
Nf           S+ 

3 5.00 278.3 548.1 6.67 742.5    253.9 8.33     391.9 895.7    10.00 638.5      1096.3 
5 3.00 167.0 328.9 4.00 445.3     152.3 5.00     235.2 537.6      6.00 383.1        657.8 
7 2.14 119.1 234.6 2.86 318.4    108.9 3.57     167.9 383.9      4.29 273.9       470.3 
9 1.67 92.9 183.1 2.22 247.1      84.5 2.78     130.8 298.9      3.33 212.6       365.1 

11 1.36 75.7 149.1 1.82 202.6      69.3 2.27     106.8 244.1      2.27 144.9       248.9 
t Longitudinal Resolutions at the North (N) and South (S) ends of the view volume are indicated. 

(c) Longitudinal Resolution. 

Table 2.     Chart of Geographic Distances and Image Resolutions for Geocentric Coordinate 
System. 
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# Z plane MACE-93 Australia ICMT2 Caribbean 
lof3 27-31 0 0-14 2-4 
2 of 3 66-74 52-64 55-90 80-85 
3 of 3 0 0 0 0 
lof5 0 0 0 0 
2 of 5 65-70 c 4-9 48-56 
3 of 5 30-35 50-60 72-78 56-66 
4 of 5 0 0 83-87 3-6 
5 of 5 0 0 0 0 
lof7 3.5-6 0 0 0 
2 of 7 53-47 0 0-0.5 10-17 
3 of 7 63-52 27-40 11-16 68-75 
4 of 7 25-18 44-54 67-76 67-74 
5 of 7 0 0 86-88 10-16 
6 of 7 0 0 25-27 0-1 
7 of 7 0 0 0 0 
lof9 1.4-2.8 0 0 0 
2 of 9 29-33 0 0 2-4 
3 of 9 52-61 3-8 2-6 44-53 
4 of 9 35-43 28-38 12-17 48-58 
5 of 9 11-16 39-48 52-62 58-66 
6 of 9 0 0.5-2 74-80 14-20 
7 of 9 0 0 59-65 2-5 
8 of 9 0 0 0 0 
9 of 9 0 0 0 0 
lof 11 0.5-2 0 0 0 
2 of 11 18-23 0 0 0 
3 of 11 43-52 0 0-1 14-21 
4 of 11 42-53 12-26 6.5-9 56-65 
5 of 11 27-33 23-33 15-23 31-41 
6 of 11 7-11 35-44 48-58 54-63 
7 of 11 0 2-6 54-61 16-24 
8 of 11 0 0 78-85 5-10 
9 of 11 0 0 40-44. 0-2 
10 of 11 0 0 0 0 
11 of 11 0 0 0 0 

Table 3.     Results of Percentage Coverage Versus Resolution Analysis on Four Experimental 
CIT Imag ;ing Systems. 
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Abstract 

This paper introduces a quantitative feature extraction technique for the evaluation of the 

content and the quality of images of ionospheric electron distribution. Parametric alteration of the 

properties of image histograms of electron density distributions enable the separation of features 

such as enhancements, depletions and small scale irregularities of such images from the 

background. This technique is aimed at providing comparison of plasma images obtained from 

different sources and for the utilization of the image information content for various applications 

in real time. 



1. Introduction 

Recent advances in ionospheric probing and imaging techniques and in the development 

of various applications which utilize images of ionospheric electron density distribution in real- 

time indicate the need for a simple, automatic, unbiased and universally applicable numerical 

method for evaluating the contents of such images. Two and three dimensional maps of 

ionospheric electron density are obtained from various sources ranging from extrapolated 

distribution profiles from HF ionosondes [Davies, 1990; Hausman and Nickisch, 1998], to true 

images generated by ionospheric tomography using VHF and UHF signals [Austen et al, 1988; 

Fremouw, 1992; Na and Lee, 1994; Raymund, 1994; Fougere, 1995; Na and Biswas, 1996; Sutton 

and Na, 1996; Biswas and Na, 1998a; Fehmers, 1998; Kulinski, 1998] and even more accurate 

images mapped by incoherent scatter radars [Hunsucker, 1991]. The geographical extents of these 

images can vary from very localized areas in the vicinity of quasi-vertical ionosondes to several 

thousands of kilometers below a satellite orbit or along the look directions of an oblique 

backscatter sounder. The resolution and reliability of the actual pixel based information content in 

these electron density maps vary significantly based on the accuracy of measurement and on 

image reconstruction techniques. In addition, the information content of a given image is defined 

by the applications that make use of various measurements from the distribution map. 

Current literature on ionospheric imaging indicates the need for a simple and unbiased 

numerical method for evaluating the quality of reconstructed images which is suitable for diverse 

applications. Images obtained by computerized ionospheric tomography (CIT) have traditionally 

been subjected to visual evaluation and analysis. Comparison of CIT reconstructions with images 

obtained from incoherent scatter radar (ISR), which is regarded as the best process of estimating 



reconstruction quality, would also benefit from the use of an abstract quantitative analysis 

technique. Often, various CIT reconstructions are compared to each other for algorithm 

evaluation. This situation emphasizes the need for an analysis procedure that is independent of the 

source of the image distribution and is capable of comparing image information at a more abstract 

level in a manner similar to that of a human expert. 

Image reconstruction for CIT requires the simultaneous participation of a broad spectrum 

of disciplines ranging from the digital domain of image processing to that of plasma physics 

involving parametric equations, which, for all practical purposes, can be considered to be 

functions of continuous space and time domains. The final image produced by a generic CIT 

algorithm could be the result of statistical analysis, iterative algebraic tomographic reconstruction, 

basis function decomposition, physical constraint based optimization or various combinations of 

the above. In addition, the scale of the image and location of the CIT system play a significant 

role in determining contrast, resolution and several other visible attributes of features within the 

image. Consequently, the list of image differences at the pixel level or even at that of regional 

texture is often too exhaustive for enumeration and consideration as a basis for quantitative image 

analysis. Various real time applications such as over-the-horizon radar (OTHR) require specific 

information from images of ionospheric plasma distribution such as the height and electron 

content of maximum electron density [Biswas and Na, 1998b]. Pixel based comparative 

processing throughout the image plane such as square error estimation would involve unnecessary 

computation when all that is required is the mutual comparison of a set of one-dimensional 

profiles from a large number of competing reconstructions. Abstraction of an image using feature 

extraction and classification techniques can provide robust compaction of information while 



providing a scheme for application dependent quality estimation. It must be emphasized however, 

that standard image comparison schemes such as mean square error images and image gradient 

differentials carry vital information regarding image quality and must not be completely 

disregarded in the analysis process. 

The aim of this paper is to introduce methods of extracting relevant information from 

competing images as well as the differentials of their pixel based attributes for quantitative 

evaluation of quality. The next section discusses the major properties of a typical image of 

ionospheric plasma and distribution features of interest to major applications such as OTHR or 

HF communications systems. Section three introduces the processes of parametric histogram 

distribution (PHD) and subsequent feature extraction. The following section involves a discussion 

of various methods of image-plane based comparison of plasma images which can provide direct 

measurement of several significant changes during real-time monitoring of ionospheric structures. 

Section five summarizes the need, the approach and the significance of the newly developed 

image content and comparison technique and discusses issues associated with future 

developments in this area of research. 

2. Features of Interest in Ionospheric Electron Density Images 

The first step in the information extraction from a signal for abstract representation 

involves the selection of features, which provide robust, yet reliable accounts of its vital 

attributes. Information about the nature of commonly encountered ionospheric features was 

obtained from various sources ranging from direct and reliable measurements using incoherent 

scatter radar (ISR) to images generated by empirical atmospheric plasma models such as the 

International Reference Ionosphere (IRI) and the Parameterized Ionospheric Model (PBvI). 



. The simplest model of the ionosphere is that of a horizontally stratified, spherical shell 

surrounding the earth at between of approximately 100-450 km. The altitudinal variation of 

density can be approximated to an asymmetric Gaussian or an alpha-Chapman profile [Davies, 

1990] with the sharper gradient below the height of maximum electron density. Observed in a 

two-dimensional ground-altitude plane, the section of this shell appears to be a horizontal band as 

shown in Figure 1. Embedded within the band are regional enhancements of extremely high 

electron content known as peaks caused by plasma convection in the vicinity of the magnetic 

equator or due to sudden electromagnetic disturbances such as solar storms in the auroral regions. 

The size, shape and density of these peaks vary with location, time and ambient heliogeomagnetic 

activity. The presence of such embedded peaks contributes to significant horizontal gradients in 

the surrounding band. Isolated patches of equally high density but significantly smaller 

dimensions occur as sporadic E and Fi formations that drift through the ionospheric matrix due to 

gradients in plasma density between the sunlit and dark portions of the upper atmosphere. 

Although smaller in size and lasting for shorter durations than the peaks, these patches are of vital 

importance to communications systems since they result in fading and radio scintillation. Thus the 

band, the peak and the patch were selected as the three most important features of an image of 

ionospheric electron density. 

Another attribute of importance in an ionospheric image is the profile of maximum 

electron density. This can be viewed as a surface in the three dimensional spatial co-ordinate 

system of latitude, longitude and altitude indicating the geographic location with the color of a 

point on the surface serving as the fourth dimension indicating the maximum electron density. For 

conventional two-dimensional CIT images with the altitude versus latitude co-ordinate system, 



the maximum density plane reduces to a curve in three dimensions with electron density serving 

as the third axis. Examples of the latter convention are shown in Figure 2, where the three 

composite plots represent three longitudinal planes of three IRI-90 images. Each composite plot 

shows the variation of Nmax(F2) against the latitude and the altitude hm3Jf2) in the three images 

for a single longitudinal plane. 

In addition, pixel based image differences such as squared errors between two images and 

their normalized versions provide important information regarding the recovery of absolute and 

relative electron density values within the image plane. The most important information that can 

be extracted from square error plots are occurrences of isolated pockets of high error such as 

caused by relative spatial shift of features between two reconstructions or a reconstruction and an 

ISR image. The indeterminate nature of the shape, extent and magnitudes of these regions make 

it difficult to classify them into much beyond pockets of magnitude and shape errors. Comparison 

of corresponding pockets in the mean square and normalized mean square error images, however 

yields information regarding the efficiency of value recovery in the region versus shape recovery 

given identical conditions of coverage and image reconstruction procedure. This will help 

distinguish between procedures that emphasize value recovery in localized regions from those 

which enforce recovery of the shape of plasma distributions. 

Several applications such as ROTHR, require information about local gradients in 

ionospheric images. Differences, in both the magnitude and angular components of gradient 

images obtained from two different sources, highlight the relative susceptibility of the inversion 

schemes to discontinuities in coverage.    As with mean square error images, the principal 



information carried by gradient differential images lie in the existence and magnitude of high 

error regions, which can be termed as slope pockets. 

Features chosen for image representation and comparison as described in above are 

enlisted along with suitable attributes in Table 1. For bands, peaks and pockets, their considerable 

extent with respect to the image area make them eligible for boundary detection, calculation of 

geometric centroids and value-centroids or valtroids, and the length and orientation of the major 

axis in the Cartesian co-ordinate system. For small scale but significant structures such as 

patches, the major attributes for classification are location and density. The second column of 

Table 1 refers to the base image from which the feature is extracted. The abbreviations "ase" and 

"nse" stand for "absolute squared error" and "normalized square error" images, whereas 

"abgrme" and "abgrae" stand for "absolute gradient magnitude error" and "absolute gradient 

angular error" images respectively. 

3. Feature Extraction Procedure for CIT Images 

Feature extraction for bands and peaks was performed using separate intensity 

reassignment procedures for the histogram of a given ionospheric image. The examples of 

ionospheric histograms in Figure 3, show the presence of a significant background mode followed 

by a relatively low uniform ledge representing the foreground with most of the electron content. 

The aim of the histogram reassignment processes is to separate the foreground part of the 

histogram into two separate entities, the band and the peaks within it. The image processing 

technique for achieving uniformity in histogram profile is termed equalization. Therefore the 

reverse procedure of separating a uniform histogram into one or more distinctive modes can be 

termed unequalization. Contrary to the closed form definition of histogram equalization where the 



goal is to achieve a uniform histogram density for all intensities, this reverse process requires 

parametric specifications for controlling the position of occurrence and extent to which mode 

separation is permitted. The parametric histogram distribution (PHD) approach developed for 

ionospheric images involves a three-path process which simultaneously separates the band, the 

peaks and the patches from the background information. 

The first step in the detection of bands and peaks is the definition of an intensity 

transformation function. In the case of histogram processing for peak detection, it was necessary 

to separate the original histogram into two distinct modes, that of the peak(s) and that of 

everything of lesser intensity. This was achieved by a space translated single term polynomial of 

the form: 

v = (u-0.5 + eYr+0.5 (1) 

Here u and v represent the normalized axes of the original and the transformed histogram 

intensities respectively. Figure 4a shows the nature of the above curve where, for all practical 

purposes, -0.5 < s < 0.5, and 1 < y < 9. The parameter y represents the degree of contrast enforced 

between the peaks and the rest of the image, whereas s represents the threshold intensity at which 

the contrast is centered. Figure 4b shows the curve representing histogram transformation for 

isolation of the band. The aim is to separate the histogram into three principal modes representing 

the background, the 

band and the peaks while maintaining a uniform intensity within each mode. The equation for the 

curve shown in Figure 4b is: 

0.5(2«/ u e [0.00,0.25] 

v = \o.5{2u-lf u e [0.25,0.75] (2) 

0.5(2«-if ue [0.75,1.00] 
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The curve parameter 8 has a value in the range [1, 9]. Figure 5 shows an original ionospheric 

image and the result following histogram redistribution. 

The second step in feature extraction is intermodal boundary detection. Both the 

transformed histograms shown in Figure 5 have irregular profiles with several subsidiary peaks 

and valleys in each principal mode. An established natural method of threshold detection is 

iterative nodal propagation [Biswas, 1993] where all the discrete intensities of the histogram act 

as nodes in a neural network. The network is fired by initiating a nearest neighbor propagation 

and feedback sequence simultaneously from each peak. The iterative process results in 

modification of the histogram profile by accumulating the contents of arbitrarily located 

neighboring modes under the principal modes and smoothening out the profile. This process is 

continued for both the peak and band histograms until two and three modes remain in them 

respectively. The intermodal valleys denote modal thresholds. Figure 6 shows the flowchart for 

the computation of threshold and an example of progressive modal thesholding. 

The third and final stage of the feature extraction process is the detection of features 

within the boundary images and calculating vital attributes of each. Boundary detection is 

performed using an 8-way directionality map [Gonzalez and Woods, 1993]. Detection of false 

features is minimized by only permitting those with greater than a certain number of boundary 

elements to be registered, based on the geographical dimensions of the voxels. Figure 7 shows the 

boundary images of the peak and band images shown in Figure 5. 

Following peak and band extraction, three important sets of attributes are calculated for 

each. They are the positions of the geometric and the value density centroids [Gx, Gy] and [Vx, Vy] 

and the length and orientation of the major axis [Ma, M0]. Given a boundary defined as the 
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ordered and directed set of points, B = {(x{, yi), (x2, V2), -, {xn , y„)} and the original image P = 

[p(xi,yj)}, the centroids are defined as follows: 

.    n       n (3) 
- 1 r v v-    v „ l v ' [Gx,Gy] = H Ix,., ZyJ 

n ■    1   •    i i = 1  i = l 

[V"V>1 = "^~J [ ^ JC'^(J:">'')+ Sy.-PU.y/)]   «6Feature (4) 

Sp(jc,.y/),- = 1 / = 1 

j = l 

The length and orientation of the major axis of the feature are defined using conventional 

Cartesian coordinates, where given the end points [ax, ay] and [bx, by], the major axis vector is 

defined as: 

[Ma,M0] = [j(ax-bx)
2 + (ay-by)

2    ,   90/7i*tan'l((ay-by)/(ax-bx))] (5) 

Effectively, these three vectors serve as the coordinates of a six dimensional feature space 

where each feature Fj is represented by the sextuplet: Fj = [GXj, Gyj, VXj, Vyj, Maj, M0j\. Thus F can 

be defined as the domain of the primary feature space of the contents of the original image. Figure 

8 shows the set of feature attributes calculated using the parametric histogram distribution 

technique for the two images of Figure 3. 

4. Auxiliary Differential Measurements for Image Comparison 

The feature extraction process can be extended to the realm of differentials such as root 

square error and gradient magnitude and gradient angle images. As summarized in Table 1, the 

purpose of analyzing the root mean square error image resulting from two corresponding 

ionospheric distributions, is to identify regions and magnitudes of differences in absolute value. 

Feature extraction from the error images results in compaction of important information such as 
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the location, extent and magnitude of differences between the two images. The features obtained 

from various error maps such as those between an ISR image and CIT reconstructions using 

various algorithms, can then be compared on a quantitatively abstract basis to see which 

algorithm truly succeeded in incurring fewer artifacts and achieving good reconstruction. Figure 9 

shows the important differential images associated the two ionospheric images of Figure 3. 

The raw square difference image shows the actual degree of mismatch in electron density 

between two images and is useful for a direct comparison of image values. This .is useful when 

comparing a reconstruction with a standard such as ISR image or even two different 

reconstructions derived from the same TEC data using different parameters or algorithmic 

approaches. A finer analysis of the success of each reconstruction requires comparison of the 

relative accuracy of feature recovery in each image. Instead of comparing actual electron density 

values, it is necessary to compress the dynamic range of each image to lie within the normalized 

range [0, 1] in order to be able to detect relative recovery of features within the image plane. The 

principal use of the normalized square difference image is to identify the strengths and 

weaknesses in the reconstruction processes associated with each image in dealing with issues of 

non ideal system geometry and incomplete sky coverage. When one of the images is a standard, 

this difference measure would prove highly useful in differentiating between artifacts and valid 

image features. For instance, the square difference image of Figure 9a shows a substantial 

difference in the magnitudes of electron density over the region extending between the 50th and 

the 90th voxel horizontally. This prominence is not evident in the normalized difference image, 

which indicates that although there is a disparity between actual electron densities in that region, 

relative to the maximum electron densities in either, the area is of nearly identical density in both 
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images. If the two images were reconstructed using different methods and the maximum electron 

density were somewhat different in either image, Figure 9a could lead one to conclude that they 

were divergent representations of the actual electron density. On the other hand, Figure 9b would 

help reconcile the above argument because the shapes of features recovered in the inversion 

process would match each other even if magnitudes do not. 

Differences in the gradients of two fairly similar images provide information regarding 

relative displacements of heights of maximum density, /wC^), and also of the differences in the 

density, Nma3i(F2), itself. Figure 9c and 9d show the magnitude and orientation of the gradient 

difference between the two test ionospheric images of Figure 3. According to the magnitude 

image of the difference in gradients, there is approximately a difference of 3 voxels in altitude in 

the hmax(F2), between the two images for the left half of the image which eventually gets resolved 

in the other half. Compared to an expert judging the characteristics of electron density profile 

such as maximum height and gradient of the profile by directly looking at the original images, the 

gradient calculation approach provides one with a simple and elegant method for qualitative and 

quantitative evaluation of layer height and density differences between the images. The role 

played by the orientation image of the gradient difference is that highlighting the area of maximal 

gradient discrepancy between the two images. Since the vertical profile of an ionospheric image is 

often steeper and more dynamic than the horizontal profile, differences in orientation are likely to 

be expressed as horizontal lines passing through the region in between the hmax(F2)s of the two 

images, that is at the altitude, where the difference between the skyward slope and the earthward 

slope of the two images is maximum. Since the orientation map tends to have a single such line of 

difference, given the unimodality of the vertical profile, this height can be used to diagnose the 
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principal region of discrepancy in the more complicated magnitude map. In addition to providing 

^max(^2) information, the magnitude map is also useful in locating discrepancies between 

horizontal inhomogeneities such as a trough between peaks. An example of this is also seen above 

the 14th and the 15th horizontal voxel, delineating the difference in trough locations between the 

two peaks as two voxels apart. 

5. Conclusions 

Image processing experiments were conducted on various IRI-90 images with 

approximately the same feature distributions and the results of feature extraction, classifications 

and auxiliary differential calculations. In the absence of the availability of other CIT 

reconstruction algorithms besides MIVIA, the comparison of different reconstructions from the 

same TEC data was not attempted. This was also not undertaken with the understanding that it is 

an entirely independent and vast area of research in itself. 

The principal advantage of the parametric histogram distribution based feature extraction 

process to ionospheric image analysis lies in its quantitative and objective approach to defining 

the intensity ranges for image features. Utilization of normalized histograms ensures that the 

features are selected independent of actual electron density values and the process is universally 

applicable to all ionospheric images regardless of geographic extent, ambient ionospheric activity, 

method of image generation. In addition, certain image difference measures have been analyzed 

for the extraction of important data such as shape recovery, difference in layer heights and 

gradients. 



15 

Acknowledgements 

This work was supported by the Office of Naval Research under grants N00014-95-0850 and 

N00014-97-0419 and by the National Science Foundation under grant ATM9696259. 



16 

References 

Austen, J. R., S. J. Franke, and C. H. Liu, Ionospheric imaging using computerized tomography, 
Radio Sei., 23(3), 299-307, 1988. 

Biswas, C, Volumetric Reconstruction for Ionospheric Tomography, (Ph.D. Thesis), University 
of California, Los Angeles, 1999. 

Biswas, C, and H. Na, Three-dimensional computerized ionospheric tomography using 
volumetric constraints, Radio Sei., 33(6), 1793-1805, 1998. 

Biswas, C, and H. Na., Multisource volumetric tomography for over-the-horizon radar, Radio 
Sc/., 53(6), 1685-1703, 1998. 

Davis, K., Ionospheric Radio, Peter Peregrinus, London, 1990. 

Gonzalez R. C, and R. E. Woods, Digital Image Processing, 1st Ed, Addison Wesley, N.Y., 1990. 

Kak, A. C, and M. Slaney, Principles of Computerized Tomography, IEEE Press, Piscataway, N. 
J., 1988. 

Leitinger, R., Data from Orbiting Navigation Satellites for Tomographie Reconstruction, Int. J. 
Imaging Syst. Technol., 5(2), 86-96, 1994. 

Mitchell, C. N., S. E. Pryse, L. Kersley, and I. K. Walker, The correction for the satellite-receiver 
longitude difference in ionospheric tomography, J. Atmos. Sol. Terr. Phys., 59(16), 2077- 
2087, 1997. 

Na, H., and H. Lee, Resolution degradation parameters of ionospheric tomography, Radio Sei., 
29(1), 115-125,1994. 



17 

List of Figures 

Figure 1.   Ionospheric Features of Interest. 

Figure 2. Example of Maximum F2 layer Density Profile of 3 Two-dimensional Images 
along (a) 70° E (b) 75° E and (c) 80° E Longitudes. 

Figure 3. Sample Ionospheric Electron Density Distributions from IRI-90 and Histograms of 
Number of Occurrences vs. Electron Density Values. 

Figure 4. Parametric Histogram Distribution Curves for (a) Peak and (b) Band 
Separation. 

Figure 5.   Peak and Band Separation Using Parametric Histogram Distribution. 

Figure 6. (a) Neural Network Used for Progressive Modal Thresholding, (b) Examples of 
Thresholded Histograms. 

Figure 7. Boundary Detection of Peaks and Band, (b) Detection of Small Scale 
Disturbances. 

Figure 8.   Results of Feature Extraction. 

Figure 9. Difference Images of Ionospheric Distributions Shown in Figure 3. (a) 
Absolute Square Difference Image (b) Normalized Square Difference Image 
(c) Magnitude of Gradient Error Image (d) Orientation of Gradient Error 
Image. 



18 

List of Tables 

Table 1. Features Selected for Representing Contents of Ionospheric Images. 



19 

IONOSPHERIC IMAGE IMAGE FEATURES 

Background 

Peak 

Figure 1. Ionospheric Features of Interest. 



20 

60      14 Altitude (km) 
Latitude (deg N) 

Latitude (deg N) 

350 

60     250 Altitude (km) 

Latitude (deg N) 

350 

60      250 
Altitude (km) 
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Figure 4. Parametric Histogram Distribution Curves for (a) Peak and (b) Band Separation 
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Figure 6. (a) Neural Network Used for Progressive Modal Thresholding, (b) Examples of 
Thresholded Histograms. 
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Feature Image Attributes Significance 

Band original 

Peak original 

Patch original 

ASE Pocket ase 

NSE Pocket nse 

MAG Pocket absgrme 

SLP Pocket absgrae 

Maxdensity original 

boundary, centroid, valtroid, maj. ax. length & slope 

boundary, centroid, valtroid, maj. ax. length & slope 

position, electron density 

boundary, centroid, valtroid, maj. ax. length & slope 

boundary, centroid, valtroid, maj. ax. length & slope 

boundary, centroid, valtroid, maj. ax. length & slope 

boundary, centroid, valtroid, maj. ax. length & slope 

3D (4D) plot of Ne vs latitude, alttitude (&longitude) 

band existence 

peak existence 
patch existence 

value recovery 

shape recovery 

grd. mag. recovery 

grd. orient, recovery 

F2 critical frequency 

Table 1. Features Selected for Representing Contents of Ionospheric Images. 


